YouZum

Improving Detection of Watermarked Language Models

arXiv:2508.13131v1 Announce Type: new
Abstract: Watermarking has recently emerged as an effective strategy for detecting the generations of large language models (LLMs). The strength of a watermark typically depends strongly on the entropy afforded by the language model and the set of input prompts. However, entropy can be quite limited in practice, especially for models that are post-trained, for example via instruction tuning or reinforcement learning from human feedback (RLHF), which makes detection based on watermarking alone challenging. In this work, we investigate whether detection can be improved by combining watermark detectors with non-watermark ones. We explore a number of hybrid schemes that combine the two, observing performance gains over either class of detector under a wide range of experimental conditions.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE