arXiv:2408.00004v2 Announce Type: replace-cross
Abstract: This paper addresses the problem of correctly formatting numeric expressions in automatic speech recognition (ASR) transcripts. This is challenging since the expected transcript format depends on the context, e.g., 1945 (year) vs. 19:45 (timestamp). We compare cascaded and end-to-end approaches to recognize and format numeric expressions such as years, timestamps, currency amounts, and quantities. For the end-to-end approach, we employed a data generation strategy using a large language model (LLM) together with a text to speech (TTS) model to generate adaptation data. The results on our test data set show that while approaches based on LLMs perform well in recognizing formatted numeric expressions, adapted end-to-end models offer competitive performance with the advantage of lower latency and inference cost.