YouZum

Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems

arXiv:2507.16835v1 Announce Type: cross
Abstract: Voice-based conversational AI systems increasingly rely on cascaded architectures combining speech-to-text (STT), large language models (LLMs), and text-to-speech (TTS) components. However, systematic evaluation of different component combinations in production settings remains understudied. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data from over 300,000 AI-conducted job interviews. We develop an automated evaluation framework using LLM-as-a-Judge to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of four production configurations reveals that Google STT paired with GPT-4.1 significantly outperforms alternatives in both conversational and technical quality metrics. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversational AI systems and contribute a validated evaluation methodology for voice-based interactions.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE