YouZum

Beyond Imitation: Recovering Dense Rewards from Demonstrations

arXiv:2510.02493v1 Announce Type: cross
Abstract: Conventionally, supervised fine-tuning (SFT) is treated as a simple imitation learning process that only trains a policy to imitate expert behavior on demonstration datasets. In this work, we challenge this view by establishing a fundamental equivalence between SFT and Inverse Reinforcement Learning. We prove that the SFT objective is a special case of Inverse Q-Learning, which implies that the SFT process does not just learn a policy, but also an implicit, dense, token-level reward model that explains the expert demonstrations. We then show how to recover this dense reward signal directly from the SFT model by formulating a baseline-relative reward function. The availability of such a dense reward model offers numerous benefits, providing granular credit assignment for each token generated. We demonstrate one key application by using these recovered rewards to further improve the policy with reinforcement learning. Our method, Dense-Path REINFORCE, consistently outperforms the original SFT models on instruction-following benchmarks. This work reframes SFT not merely as policy imitation but as a powerful reward learning mechanism, opening new possibilities for leveraging expert demonstrations.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE