YouZum

Benchmarking Chinese Commonsense Reasoning with a Multi-hop Reasoning Perspective

arXiv:2510.08800v1 Announce Type: new
Abstract: While Large Language Models (LLMs) have demonstrated advanced reasoning capabilities, their comprehensive evaluation in general Chinese-language contexts remains understudied. To bridge this gap, we propose Chinese Commonsense Multi-hop Reasoning (CCMOR), a novel benchmark designed to evaluate LLMs’ ability to integrate Chinese-specific factual knowledge with multi-step logical reasoning. Specifically, we first construct a domain-balanced seed set from existing QA datasets, then develop an LLM-powered pipeline to generate multi-hop questions anchored on factual unit chains. To ensure the quality of resulting dataset, we implement a human-in-the-loop verification system, where domain experts systematically validate and refine the generated questions. Using CCMOR, we evaluate state-of-the-art LLMs, demonstrating persistent limitations in LLMs’ ability to process long-tail knowledge and execute knowledge-intensive reasoning. Notably, retrieval-augmented generation substantially mitigates these knowledge gaps, yielding significant performance gains.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE