YouZum

A Group Fairness Lens for Large Language Models

arXiv:2312.15478v2 Announce Type: replace
Abstract: The need to assess LLMs for bias and fairness is critical, with current evaluations often being narrow, missing a broad categorical view. In this paper, we propose evaluating the bias and fairness of LLMs from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFAIR, encapsulating target-attribute combinations across multiple dimensions. Moreover, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLMs from a group fairness perspective, we pioneer a novel chainof-thought method GF-THINK to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias and achieving fairness in LLMs. Our dataset and codes are available at https://github.com/surika/Group-Fairness-LLMs.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE