YouZum

Scaling Truth: The Confidence Paradox in AI Fact-Checking

arXiv:2509.08803v1 Announce Type: cross
Abstract: The rise of misinformation underscores the need for scalable and reliable fact-checking solutions. Large language models (LLMs) hold promise in automating fact verification, yet their effectiveness across global contexts remains uncertain. We systematically evaluate nine established LLMs across multiple categories (open/closed-source, multiple sizes, diverse architectures, reasoning-based) using 5,000 claims previously assessed by 174 professional fact-checking organizations across 47 languages. Our methodology tests model generalizability on claims postdating training cutoffs and four prompting strategies mirroring both citizen and professional fact-checker interactions, with over 240,000 human annotations as ground truth. Findings reveal a concerning pattern resembling the Dunning-Kruger effect: smaller, accessible models show high confidence despite lower accuracy, while larger models demonstrate higher accuracy but lower confidence. This risks systemic bias in information verification, as resource-constrained organizations typically use smaller models. Performance gaps are most pronounced for non-English languages and claims originating from the Global South, threatening to widen existing information inequalities. These results establish a multilingual benchmark for future research and provide an evidence base for policy aimed at ensuring equitable access to trustworthy, AI-assisted fact-checking.

We use cookies to improve your experience and performance on our website. You can learn more at Datenschutzrichtlinie and manage your privacy settings by clicking Settings.

Privacy Preferences

You can choose your cookie settings by turning on/off each type of cookie as you wish, except for essential cookies.

Allow All
Manage Consent Preferences
  • Always Active

Save
de_DE